

SPEC NO.: CR-002HDIP

Specification

TO:STE508

Model Name: Ceramic Resonator

PART NO: LT10.7MA19 CUSTOMER PART NO.:

Approval sheet:	
	Yes
Approved	No.
Customer's comments are welcomed here.	
Pls return this copy as a certificate of your approval by Fax.	
T is return this copy as a certificate of your approval by Tax.	
A	
Approved By Date:	

STRONG ELECTRONICS&TECHNOLOGY LIMITED

Tel:86-755-84528985 Fax: 86-755-84528986 Email:info@strongelectronics.net www.sawfilter.cn

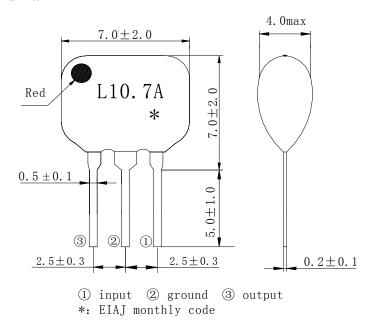
History Record

Date	Part No.	SPEC No.	Description.	Remarks.
	<u>JT10.7MA19</u>			
	JG00001 2 000	Approved by	Check by	Design by
RoHS Compliant Lead free Lead-free soldering	ISO9001:2000 ISO14001:2004	May-15-2007	May-10-2005	Jan-16-1999
Reversions	Total Page	Yu aana dana	Liu jun	Wang hon
CR-002HDIP		Xu gang dong		Journal of the state of the sta

SPECIFICATION

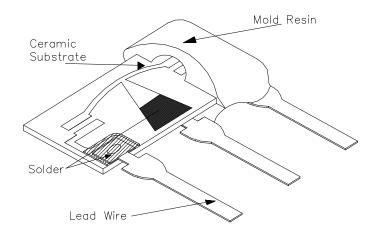
1. SCOPE

This specification shall cover the characteristics of the ceramic filter with the type LT10.7MA19.


2. PART NO.

PART NUMBER	PREVIOUS PART NUMBER
LT10.7MA19	LT10.7MA19
CUSTOMER PART NO	SPECIFICATION NO

3. OUTLINE DIMENSIONS AND MARK


- 3.1 Appearance: No visible damage and dirt.
- 3.2 Construction: Leads are soldered on electrode and body is molded by resin.
- 3.3 The products conform to the RoHS directive and national environment protection law.

3.4 Dimensions and mark

3.5 Structure

No.	Component	Material
1)	Lead Wire	Solder plating copper or iron wire
2	Coating	epoxy resin
3	Solder	High-melting solder
4)	Ceramic Substrate	Lead titanate-zirconate

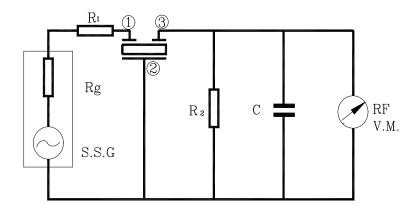
4. ELECTRICAL SPECIFICATIONS

4.1 RATING

Items	Requirement
Withstand DC Voltage	50V (1min max)
Insulation Resistance $M \Omega$ min.	100 (10V, 1min±5s)
Operating temperature	-40°C∼85°C
Storage temperature	-40℃~85℃

4.2 ELECTRICAL SPECIFICATIONS

Items	Requirement
Center Frequency fo (MHz)	10.700 ± 0.030
3dB Band Width (kHz) min	±175
20dB Band Width (kHz) max	950


Insertion Loss (dB) max	5.0
Ripple (within 3dB bandwidth) (dB) max	3.0
Spurious Attenuation (dB) min	20 (9—12MHz)
Input/Output Impedance (Ω)	470
Temp. Coefficient of Frequency	±50 (Center Frequency drift,
ppm/°C max°C	-40~85°C)

5. TEST

5.1 Test Conditions

Parts shall be tested under the condition (Temp.: $20\pm15\,^{\circ}$ C, Humidity : $65\pm20\%$ R.H.) unless the standard condition(Temp.: $25\pm2\,^{\circ}$ C, Humidity : $65\pm5\%$ R.H.) is regulated to measure.

5.2 Test Circuit

 $Rg+R1=R2=470 \Omega$

C=10pF(Including stray capacitance and input capacitance of RF voltmeter)

6. ENVIRONMENTAL TEST

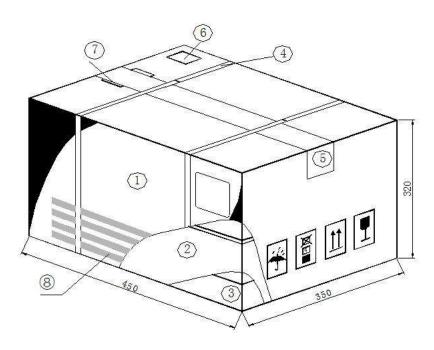
No.	Itam	Condition of Test	Performance
NO.	Item	Condition of Test	Requirement
6.1	Humidity	Subject the filter at 60 ± 2 °C and 90%-95% R.H. for 1000h, Filter shall be measured after being placed in natural conditions for 1h.	It shall fulfill Table 1.
6.2	High Temperature Exposure	Subject the filter to 85 ± 2 °C for 1000h, Filter shall be measured after being placed in natural conditions for 1h.	It shall fulfill Table 1.
6.3	Low Temperature Exposure	Subject the filter to -40 ± 2 °C for 1000h, Filter shall be measured after being placed in natural conditions for 1h.	It shall fulfill Table 1.

	Tomporatura	After temperature cyclin performed 5 times, Filter being placed in natural c	It shall fulfill Table	
6.4	Temperature Cycling	Temperature	Time	1.
		-40±3°C	30 ± 3 min	
		85±3℃	30±3 min	
		Subject the filter to vibr	ation for 2h.Each in x y	
		and z axis with the am	plitude of 1.5mm, The	It shall fulfill Table
6.5	Vibration	frequency shall be varied	d uniformly between the	1.
	limits of 10Hz-55Hz-10Hz and then filter shall		1.	
		be measured.		
	Mechanical	Filter shall be measured	No visible damage	
6.6	6 Shock dropping from the height of 1m on concrete		and it shall fulfill	
	Bliock	floor.	Table 1.	
		1)Lead terminals are immersed up to 2 mm from		
		filter's body in soldering bath of $260 \pm 5 ^{\circ}\text{C}$ for		
	Resistance	10 ± 1 s and then filter shall be measured after		
6.7	to Soldering	being placed in natural c	It shall fulfill Table	
0.7	Heat	2) Lead terminals is dir	1.	
		tip of soldering iron of	350 ± 5 °C for 5.0 ± 0.5 s	
		and then filter shall be	e measured after being	
		placed in natural condition		

(to be continued)

6. ENVIRONMENTAL TEST

No.	Item	Condition of Test	Performance Requirements
6.8	Solderability	Lead terminals are immersed up to 2mm from filter's body in soldering bath of $250\pm5^{\circ}\text{C}$ for $3\pm0.5\text{s}$.	More than 95% of the terminal surface of the filter shall be covered with fresh solder.
6.9 6.9.1 6.9.2	Terminal Strength Terminal Pulling Terminal Bending	Force of 5N is applied to each lead in axial direction for $10s\pm1s$. When force of 5N is applied to each lead in axial direction, the lead shall folded up 90 ° from the axial direction and folded back to the axial direction. The speed of folding shall be each 3s.	No visible damage and it shall fulfill Table 1.


Table 1	
---------	--

Item	Characteristics after test	
Center Frequency drift	±30kHz max	
Insertion Loss drift	±2dB max.	
3dB Band Width drift	±20kHz max.	
20dB Band Width drift	± 30 kHz max.	
Spurious Response 18 dB min		
Note: The limits in the above table are referenced to the initial measurements.		

7. PACKAGE

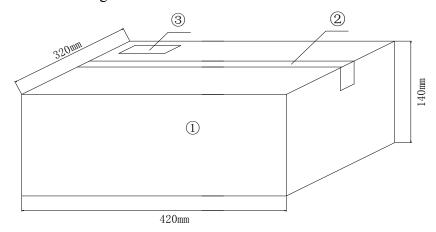
To protect the products in storage and transportation, it is necessary to pack them (outer and inner package). On paper pack, the following requirements are requested.

7.1 Dimensions and Mark

NO.	Name	Quantity
1	Package	1
2	Box	2
3	Inner Box	40
4	Belt	2.9 m
5	Adhesive tape	1.2 m
6	Label	1
7	Certificate of approval	1
8	Company name ,Address etc.	

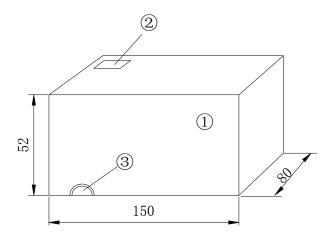
7.2 Section of Package

Package is made of corrugated paper with thickness of 0.8cm.Package has 2 boxes, each has 20 inner boxes.


7.3 Quantity of Package

Per plastic bag
Per inner box
Per package

500 pieces
3 plastic bag
40 inner boxes


(60000 pieces of piezoelectric ceramic part)

7.4 Inner Package

NO.	Name	Quantity
1	Inner package	1
2	Adhesive tape	1.2 m
3	Label	1

7.5 Inner Box Dimensions

NO.	Name	Quantity
1	Inner Box	1
2	Label	1
3	QC Label	1

8. EIAJ Monthly Code

2011/2013/2015/2017		2012/2014/2016/2018	
MONTH	CODE	MONTH	CODE
JAN	A	JAN	N
FEB	В	FEB	P
MAR	С	MAR	Q
APR	D	APR	R
MAY	Е	MAY	S
JUN	F	JUN	Т
JUL	G	JUL	U
AUG	Н	AUG	V
SEP	J	SEP	W
OCT	K	OCT	X
NOV	L	NOV	Y
DEC	M	DEC	Z

9. OTHER

- 9.1 Caution
- 9.1.1 Don't apply excess mechanical stress to the component and terminals at soldering. Do not use this product with bend.
- 9.1.2 Do not clean or wash the component for it is not hermetically sealed.
- 9.1.3 Do not use strong acidity flux, more than 0.2wt% chlorine content, in flow soldering.
- 9.1.4 Don't be close to fire.
- 9.1.5 All kinds of re-flow soldering must not be applied on the component.
- 9.1.6 This specification mentions the quality of the component as a single unit. Please insure the component is thoroughly evaluated in your application circuit
- 9.1.7 Expire date (Shelf life) of the products is one year after delivery under the conditions of a sealed and an unopened package. Please use the products within six months after delivery. If you store the products for a long time (more than one year), use carefully because the products may be degraded in the solderability or rusty. Please confirm solderability and characteristics for the products regularly.
- 9.1.8 Please contact us before using the product as automobile electronic component.
- 9.2 Notice
- 9.2.1 Please return one of this specification after your signature of acceptance.
- 9.2.2 When something gets doubtful with this specifications, we shall jointly work to

get an agreement.